Loss of functional Dicer in mouse radial glia cell-autonomously prolongs cortical neurogenesis☆

نویسندگان

  • Tomasz Jan Nowakowski
  • Karolina Sandra Mysiak
  • Timothy O‘Leary
  • Vassiliki Fotaki
  • Thomas Pratt
  • David Jonathan Price
چکیده

Radial glia of the mouse cerebral cortex emerge from neuroepithelial stem cells around embryonic day 11 and produce excitatory cortical neurons until a few days before birth. The molecular mechanisms that regulate the end of cortical neurogenesis remain largely unknown. Here we investigated if the Dicer-dependent microRNA (miRNA) pathway is involved. By electroporating a cre-recombinase expression vector into the cortex of E13.5 embryos carrying a conditional allele of Dicer1, we induced mosaic recombination causing Dicer1 deletion and reporter activation in a subset of radial glia. We analysed the long-term fates of their progeny. We found that mutant radial glia produced abnormally large numbers of Cux1-positive neurons, many of which populated the superficial cortical layers. Injections of the S-phase marker bromodeoxyuridine between postnatal days 3 and 14 showed that much of this population was generated postnatally. Our findings suggest a role for Dicer-dependent processes in limiting the timespan of cortical neurogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly.

The cerebral cortex is built during embryonic neurogenesis, a period when excitatory neurons are generated from progenitors. Defects in neurogenesis can cause acute neurodevelopmental disorders, such as microcephaly (reduced brain size). Altered dosage of the 1q21.1 locus has been implicated in the etiology of neurodevelopmental phenotypes; however, the role of 1q21.1 genes in neurogenesis has ...

متن کامل

Cellular and Molecular Mechanisms regulating Cell Proliferation during the Forebrain Development of the Mouse

The predominant precursor cell type during cortical neurogenesis are radial glia cells, which receive extrinsic and intrinsic signals that might influence cell proliferation and neurogenesis. These radial glia cells have direct contact to the growth factor rich basement membrane throughout cell division. However, it is not known, how the signals received from the basal cell attachment influence...

متن کامل

MicroRNA-92b regulates the development of intermediate cortical progenitors in embryonic mouse brain.

Cerebral cortical neurons arise from radial glia (direct neurogenesis) or from intermediate progenitors (indirect neurogenesis); intriguingly, the sizes of intermediate progenitor populations and the cortices they generate correlate across species. The generation of intermediate progenitors is regulated by the transcription factor Tbr2, whose expression marks these cells. We investigated how th...

متن کامل

Bmp7 Regulates the Survival, Proliferation, and Neurogenic Properties of Neural Progenitor Cells during Corticogenesis in the Mouse

Bone morphogenetic proteins (BMPs) are considered important regulators of neural development. However, results mainly from a wide set of in vitro gain-of-function experiments are conflicting since these show that BMPs can act either as inhibitors or promoters of neurogenesis. Here, we report a specific and non-redundant role for BMP7 in cortical neurogenesis in vivo using knockout mice. Bmp7 is...

متن کامل

Functional Dicer Is Necessary for Appropriate Specification of Radial Glia during Early Development of Mouse Telencephalon

Early telencephalic development involves transformation of neuroepithelial stem cells into radial glia, which are themselves neuronal progenitors, around the time when the tissue begins to generate postmitotic neurons. To achieve this transformation, radial precursors express a specific combination of proteins. We investigate the hypothesis that micro RNAs regulate the ability of the early tele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 382  شماره 

صفحات  -

تاریخ انتشار 2013